首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9143篇
  免费   1488篇
  国内免费   892篇
化学   4044篇
晶体学   68篇
力学   842篇
综合类   49篇
数学   362篇
物理学   6158篇
  2024年   8篇
  2023年   83篇
  2022年   204篇
  2021年   237篇
  2020年   261篇
  2019年   261篇
  2018年   246篇
  2017年   270篇
  2016年   345篇
  2015年   332篇
  2014年   458篇
  2013年   756篇
  2012年   547篇
  2011年   688篇
  2010年   489篇
  2009年   613篇
  2008年   625篇
  2007年   690篇
  2006年   593篇
  2005年   469篇
  2004年   402篇
  2003年   364篇
  2002年   396篇
  2001年   294篇
  2000年   296篇
  1999年   212篇
  1998年   203篇
  1997年   154篇
  1996年   120篇
  1995年   143篇
  1994年   105篇
  1993年   132篇
  1992年   86篇
  1991年   68篇
  1990年   57篇
  1989年   35篇
  1988年   36篇
  1987年   28篇
  1986年   27篇
  1985年   36篇
  1984年   41篇
  1983年   15篇
  1982年   26篇
  1981年   18篇
  1980年   11篇
  1979年   8篇
  1978年   9篇
  1977年   6篇
  1976年   5篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 290 毫秒
941.
In this work, the origin of the Raman defects band at 570 cm−1 of praseodymium‐doped ceria was revisited from in situ spectra using six different exciting lines between 458 and 785 nm at low temperatures after oxidizing or reducing treatment. The observation of overtones and the fast change of relative intensity with excitation wavelength were explained by a resonance effect around 514 nm, which involved a Pr4+ containing defect stabilized at the oxidized state leading to an absorption band around 530 nm. The reduction of Pr4+ cations contained in such defects modifies the electronic properties of praseodymium doped ceria inhibiting the resonance effect. Additionally, the number of D1 defects that involved Pr3+ cations and oxygen vacancies increased allowing them to be distinguished. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
942.
We examine two formulations for the differential surface excitation parameter (DSEP): one provided by Tung et al. and the other given by the Chen–Kwei position‐dependent differential inverse inelastic mean free path integrated over the electron trajectory. We demonstrate that the latter converges to the former provided that the dielectric function of the solid does not depend on the momentum transfer or it depends on just the momentum transfer component parallel to the surface. Tung's DSEP represents therefore an approximation to the Chen–Kwei DSEP calculated for a dielectric function with no restrictions on the momentum dependence. The approximation is shown to work in the limit of small momentum transfer and to imply an error of 4%–5% for electrons traveling through the solid with energy E = 1 keV. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
943.
Nanostructure formation by single slow highly charged ion impacts can be associated with high density of electronic excitations at the impact points of the ions. Experimental results show that depending on the target material these electronic excitations may lead to very large desorption yields in the order of a few 1000 atoms per ion or the formation of nanohillocks at the impact site. Even in ultra-thin insulating membranes the formation of nanometer sized pores is observed after ion impact. In this paper, we show recent results on nanostructure formation by highly charged ions and compare them to structures and defects observed after intense electron and light ion irradiation of ionic crystals and graphene. Additional data on energy loss, charge exchange and secondary electron emission of highly charged ions clearly show that the ion charge dominates the defect formation at the surface.  相似文献   
944.
A Monte Carlo simulation including surface excitation, Auger electron‐ and secondary electron production has been performed to calculate the energy spectrum of electrons emitted from silicon in Auger electron spectroscopy (AES), covering the full energy range from the elastic peak down to the true‐secondary‐electron peak. The work aims to provide a more comprehensive understanding of the experimental AES spectrum by integrating the up‐to‐date knowledge of electron scattering and electronic excitation near the solid surface region. The Monte Carlo simulation model of beam–sample interaction includes the atomic ionization and relaxation for Auger electron production with Casnati's ionization cross section, surface plasmon excitation and bulk plasmon excitation as well as other bulk electronic excitation for inelastic scattering of electrons (including primary electrons, Auger electrons and secondary electrons) through a dielectric functional approach, cascade secondary electron production in electron inelastic scattering events, and electron elastic scattering with use of Mott's cross section. The simulated energy spectrum for Si sample describes very well the experimental AES EN(E) spectrum measured with a cylindrical mirror analyzer for primary energies ranging from 500 eV to 3000 eV. Surface excitation is found to affect strongly the loss peak shape and the intensities of the elastic peak and Auger peak, and weakly the low energy backscattering background, but it has less effect to high energy backscattering background and the Auger electron peak shape. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
945.
Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.  相似文献   
946.
Natural organic matter (NOM) is a complex and non-uniform mixture of organic compounds which plays an important role in environmental processes. Due to the complexity, it is challenging to obtain fully detailed structural information about NOM. Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) has been demonstrated to be a powerful tool for providing molecular information about NOM, multiple ionization methods are needed for comprehensive characterization of NOM at the molecular level considering the ionizing selectivity of different ionization methods. This paper reports the first use of matrix assisted laser desorption/ionization (MALDI) method coupled with FT-ICR-MS for molecular characterization of NOM within a mass range of 200–800 Da. The mass spectral data obtained by MALDI were systematically compared with data generated by electrospray ionization (ESI). It showed that complementary molecular information about NOM which could not be detected by ESI, were provided by MALDI. More unsaturated and aromatic constituents of NOM with lower O/C ratio (O/C ratio < 0.5) were preferentially ionized in MALDI negative mode, whereas more polar constituents of NOM with higher O/C ratio were preferentially ionized in ESI negative mode. Molecular anions of NOM appearing at even m/z in MALDI negative ion mode were detected. The results show that NOM molecules with aromatic structures, moderate O/C ratio (0.7 > O/C ratio > 0.25) and lower H/C ratio were liable to form molecular anions at even m/z, whereas those with higher H/C ratio are more likely to form deprotonated ions at odd m/z. It is speculated that almost half of the NOM molecules identified by MALDI may be aromatic or condensed aromatic compounds with special groups which are liable to absorb electron from other molecules to generate free radical anions during MALDI ionization.  相似文献   
947.
Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non-ratiometric QD-FRET transduction method. The selectivity of the hybridization assays was demonstrated by the detection of single nucleotide polymorphism.  相似文献   
948.
This is the part I of a tutorial review intending to give an overview of the state of the art of method validation in liquid chromatography mass spectrometry (LC–MS) and discuss specific issues that arise with MS (and MS/MS) detection in LC (as opposed to the “conventional” detectors). The Part I briefly introduces the principles of operation of LC–MS (emphasizing the aspects important from the validation point of view, in particular the ionization process and ionization suppression/enhancement); reviews the main validation guideline documents and discusses in detail the following performance parameters: selectivity/specificity/identity, ruggedness/robustness, limit of detection, limit of quantification, decision limit and detection capability. With every method performance characteristic its essence and terminology are addressed, the current status of treating it is reviewed and recommendations are given, how to determine it, specifically in the case of LC–MS methods.  相似文献   
949.
Protein secondary structural analysis is important for understanding the relationship between protein structure and function, or more importantly how changes in structure relate to loss of function. The structurally sensitive protein vibrational modes (amide I, II, III and S) in deep-ultraviolet resonance Raman (DUVRR) spectra resulting from the backbone C–O and N–H vibrations make DUVRR a potentially powerful tool for studying secondary structure changes. Experimental studies reveal that the position and intensity of the four amide modes in DUVRR spectra of proteins are largely correlated with the varying fractions of α-helix, β-sheet and disordered structural content of proteins. Employing multivariate calibration methods and DUVRR spectra of globular proteins with varying structural compositions, the secondary structure of a protein with unknown structure can be predicted. A disadvantage of multivariate calibration methods is the requirement of known concentration or spectral profiles. Second-order curve resolution methods, such as parallel factor analysis (PARAFAC), do not have such a requirement due to the “second-order advantage.” An exceptional feature of DUVRR spectroscopy is that DUVRR spectra are linearly dependent on both excitation wavelength and secondary structure composition. Thus, higher order data can be created by combining protein DUVRR spectra of several proteins collected at multiple excitation wavelengths to give multi-excitation ultraviolet resonance Raman data (ME-UVRR). PARAFAC has been used to analyze ME-UVRR data of nine proteins to resolve the pure spectral, excitation and compositional profiles. A three factor model with non-negativity constraints produced three unique factors that were correlated with the relative abundance of helical, β-sheet and poly-proline II dihedral angles. This is the first empirical evidence that the typically resolved “disordered” spectrum represents the better defined poly-proline II type structure.  相似文献   
950.
高效液相色谱-同位素稀释质谱法定量分析人生长激素   总被引:1,自引:0,他引:1  
建立了人生长激素( hGH)纯化分析和高效液相色谱( HPLC)与同位素稀释质谱( IDMS)联用高准确度绝对定量方法。采用快速蛋白液相色谱来分离纯化hGH,以傅里叶变换离子回旋共振质谱仪( FTICR-MS)准确地测定蛋白质的分子质量。纯化的hGH经酸水解后,采用KINETEX C18色谱柱为分析柱,以水(含0.1%三氟乙酸)和乙腈为流动相,等梯度分离,流速0.2 mL/min,温度40℃,采用电喷雾正离子模式进行电离,选择多反应监测模式进行检测,内标法定量分析。结果表明,FTICR-MS所测得的分子量实测值与理论值仅相差0.31 Da,脯氨酸、缬氨酸和苯丙氨酸在液相条件下5 min内达到基线分离,在最优条件下,hGH含量测定结果为186.80 mg/g,相对标准偏差为0.52%。利用本方法参加国际比对,比对结果与参考值等效一致。本方法具有简易、实用的特点,并且准确可靠,可作为hGH纯品标准物质的定值方法,为hGH的日常检测提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号